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Abstract 

In this paper we investigate the statistical properties of gravitational lenses 
for models in which a cosmological term decreases with time 8% A a aem, where 
a is the scale factor and m ia a parameter (0 5 m < 3). We show that for given 
low values of the present matter density parameter $lme, there is a wide range 
of values for m for which the lensing rate is significantly smaller than that in 
cosmological constant (A) models. We also show that models with low Qmo 
and m 2 2 have high likelihood to reproduce the observed lens statistics in the 
HST snapshot survey. 
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1 Introduction 

In the last five years or so, the statistics of gravitational lensing (Turner, Ostriker 
and Gott III 1984, hereafter TOG) has proven to be a powerful tool in constraining 
models of the universe, especially those with a cosmological constant (A). Cosmologies 
with a A-term have a long history and are now receiving considerable attention (see 
Carroll, Press and Turner 1992 for review). Spatially flat cosmological models with a 
cosmological constant have been suggested (Peebles 1984; Turner, Steigman & Krauss 
1984) as a way to reconcile inflation with dynamical analyses on scales of w lOh-’ 
Mpc, that indicate a value for the density parameter 0s N 0.1 to 0.3 (Peebles 1993). 
A cosmological constant also alters the transfer function for the density perturbations 
giving more power in the perturbation spectrum at large scales (as compared with 
standard CDM) in accordance with observations (Efstathiou et al. 1990; Lahav et 
al. 1991; Kofman et al. 1993). Besides, if the present value of the Hubble parameter 
is high, as indicated by some recent observations (Pierce et. al. 1994; Freedman et. 
al. 1994), a cosmologicd term will be the only way to get a theoretical age for a 
flat universe in accordance with current age estimates for globular clusters (Chaboyer 
1994). 

The idea that light could be focused by the gravitational lens effect was first 
suggested by Lodge (1919) near the beginning of the century. For several decades 
the subject of gravitational lensing had a quite slow development, but recently it 
started to become one of the most active research area in astrophysics and cosmology. 
There are several reasons for the current interest in gravitational lensing. On the 
cosmological side, after the works of Ftefsdal(l964) and Press & Gunn (1973), it was 
realized that cosmological parameters could be probed by the gravitational lensing 
effect. In the beginning it seemed that lensing properties were too insensitive and 
would only distinguish extreme cosmological models. Later on, Turner (1990) and 
Fukugita, Futamase & Kasai (1990) showed that a non-zero cosmological constant 
could significantly affect the statistics of gravitational lenses, especially in a low- 
density universe. 

However, there are uncertainties in the study of the statistics of gravitational 
lensing (Mao 1991; Fukugita, Futamase, Kasai & Turner 1992, hereafter FFKT). 
For example, the lens effect depends considerably on how the mass is distributed 
in the lensing galaxy. Hinshaw and Krauss (1987) showed that the introduction of 
a core in the isothermal sphere galaxy model (non-singular isothermal sphere) can 
significantly modify the statistical lensing properties. Another issue is what distance 
formula should be used: the angular diameter distance or the Dyer-Roeder distance? 
Related to this question is the kind of statistics to be applied (Ehlers & Schneider 
1986; FFKT). We should also mention the important effect of magnification bias and 
other selection effects such as angular resolution, galaxy evolution and merging on 
lensing probabilities (TOG; Fukugita & Turner 1991, hereafter FT; Mao 1991; Mao 
& Kochaneck 1993; Rix, Maoz, Turner & Fukugita 1994). 
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In spite of the uncertainties, the calculated rate of lensing in A-flat models, when 
confronted with the existing lensing observations, indicates that models with density 
parameter ($?,o) close to unity are most likely. For instance, Maoz & Rix (1993) 
claim that at present we should have 12~ 2 0.7 . So, it is becoming more and more 
difficult to make the. dynamical estimates for 0 on scales N lOh-’ Mpc compatible 
with a flat cosmological model with A # 0. It should be pointed out, however, that 
the lensing frequency of quasar images is considerably reduced if early-type galaxies 
(2 2 0.5) were dusty (Fukugita & Peebles (1994)). 

The results above seem to favor open FRW models. There are however other 
possibilities. For example, Ratra and Quillen (1992) showed that, for a wide range of 
parameters, the predicted lensing rate is considerably reduced in a class of flat models 
(Peebles & Ratra 1988, Ratra & Peebles 1988) in which a scalar field plays the role 
of an effective cosmological “constant” that decreases with time. Some other models 
with a decreasing cosmological term were also proposed ((Ozer & Taha 1987a,b; 
Freese, Adams, Frieman & Mottola 1987; Chen & Wu 1990; Abdel-Rahman 1992; 
Car&ho, Lima & Waga 1992; Silveira & Waga 1994) and it would be interesting 
to know if they also predict a lower lensing rate. We can argue that we should 
expect a positive answer to this question. The reason is that usually in a varying 
A cosmological model,.the distance to an object with redshift z is smaller than the 
distance to the same object in a constant A model with the same &o. So, the 
probability that light coming from the object is a&ted by a foreground galaxy is 
reduced in a decaying A cosmology. However this is only a qualitative argument, 
and it is clear that a quantitative treatment is necessary if we want to put limits on 
parameters of the models. 

In this paper we address the above question to the special class of models proposed 
by Silveira and Waga (1994) in which a cosmological term decreases with time as 
A a aDm, where a is the scale factor and 0 5 m < 3 is a constant. We show that 
these models also admit a large set of parameters for which the predicted lensing rate 
is much lower than that obtained in a constant A model with the same low value 
of &a. The paper is organized as follows: In section (2) the assumptions and basic 
equations of our models are presented. We exhibit expressions for two sorts of distance 
that we shall use, and discuss the corresponding statistics associated with them, In 
section (3) we model galaxies by the isothermal sphere density profile and obtain the 
predicted lensing probabilities and the distribution of image angular separation for 
some typical models previously chosen. In section (4) we compare the predictions of 
the models to observations and stress our main conclusions in section (5). 

2 Decaying vacuum cosmological models - dis- 
tance and optical depth formulas 

Following Silveira and Waga we assume that the cosmic fluid is a non-interacting 
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mixture of non-relativistic matter and radiation. The cosmological term is assumed 
to be a time dependent quantity, 

A = 3jasm, (1) 

where ,0 2 0 is a constant and the factor 3 was inserted for mathematical conve- 
nience. We also assume that the vacuum decays only into relativistic particles such 
that matter is conserved (pm a as3 ). As shown by Silveira and Waga (1994), the 
radiation energy density has two parts; one conserved (irpaHo2(ao/a)“) and a second 
one, (&a-“), that appears due to particle creation by the decaying vacuum. 
Here a0 is the present value of the scale factor, Ho = 100 h km s-l Mpc-’ is the 
present value of the Hubble parameter (h N 0.5 - 1) and R,.s = 4.3 x 10-Sh-2 stands 
for the present value of the conserved radiation density parameter. In the following, 
subscripts 0 will always indicate present values. 

The Einstein equations for the models we are considering reduce to 

and 

ci 2 

(3 _ a 
= QmoH~ 3 + f&Hi (z)” - flmHi (s)2, 

a 

ii 
- = -;SlmOH; (““>3 + 
a a 

(2-m)nZoH,2 2 
- -2 -ma 

where Rme is the matter density parameter, R+o = ““2-z; and 0~) = A. 
Since we are mainly interested in the lensing properties of the models, 6lly recent 

epochs have to be considered (z 5 5). This justifies neglecting the conserved radiation 
energy density on the right hand side of (2) and (3). To have some grounds of 
comparison we have included the curvature term in (2) and will also consider the 
open FRW (tc = -1) model. 

The equations above are quite general and apply for a broad spectrum of models. 
Let us first consider the k = 0 case. For instance, if m = 0 the usual flat FRW model 
with a cosmological constant is recovered, whilst if m = 2 the above equations (with 
0~ = 0) are formally the same as those of the open FRW model. The same equations 
also appear in some string dominated cosmologies (Vilenkin 1984). Further, we would 
get the same equations if we had considered, besides matter , an exotic x-fluid with 
equation of state, pt = (f - l)p,. Cosmologies having a fluid with this behavior were 
investigated by Fry (1985), Sahni, Feldman and Stebbins (1992) Feldman and Evrard 
( 1993) and more recently by Martel(l995). We remark that all we shall discuss here 
also applies for these models. We should also mention that in the limit pm >> ~4, 
the scalar field model analyzed by Ratra and Quillen has the same behavior as the 
one proposed here. This can be seen easily if we relate their parameter Q with m 
a-% Q = %. It is clear however, that the models are different (unless m = 0) if 
i-l m~ 2 flzor during the x-component (vacuum) dominated era when, in fact, all the 
lensing properties we shall discuss are important. 
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In this paper we shall compare the following models: 
Case A: m = 0, Qrne = 1 and k = 0 (Einstein-de Sitter model). 
Case B: m = 2, flZme = 0.2 and k = 0. 
Case C: m = 0, RmO = 0.2 and k = 0 (Friedman-Lemaitre model). 
Case D: Rme = 0.2, Rd = 0 and k = -1 (Open FRW model). 
For the sake of completeness we have included case D in our analysis. It will be 
interesting to compare it with case B, which has similar field equations but has flat 
spatial sections. We also analyzed the case m = 1 and it turned out that it always 
has behavior between cases B and C, so we decided not to explicitly include it in our 
discussion. 

For the flat models A, B and C, the angular diameter distance, &(%L, %s) , between 
two objects, one with redshift %L and the other with %s is given by, 

ds(a,a) = - 
dY 

fl*o( 1 + y>s + (1 - Go)(I + Y)” * 
(4) 

Equation (4) can be expressed in terms of the hypergeometric functions F(a, b; c, %) 
as 

&(fL., a> = 
2cH;’ 

(1+ a)& x 

& 
q;,6 12m;~-~~,-1~R’“.(‘+%L)m-3)- - - m0 

F(;,6 12m;;-;;,-1;R”“(l+%s)“-3)). (5) - m0 

For some special values of m, the hypergeometric function in (5) can be reduced to 
elementary functions. This can be done, for instance, for m = 2 if we use the relation, 
F( l/2,1/2; 3/2, -z2) = 2-l sinh-r(z). For the Einstein-de Sitter model equation (4) 
can easily be integrated giving 

dS(Z~,%S) = 2cHo 1 + %- [(l + r&1’2 - (I + %s)-1’2] * 

In fact, we can obtain (6) from (5), by observing that in the limit Qme -+ 1 the 
hypergeometric function also goes to unity. 

In the case of open models, the angular diameter distance can be expressed as 
(FFKT) 

&(a, 4 = 
2cH,-’ 

nLe(l+ %L,)(l+ %s)2 
((2 - firnO + flmO%S> x 

JG- (2 - f&n0 + flrnO%L) Jl+n,,zs>* (7) 
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The differential probability, dr, that a line of sight intersects a galaxy at redshift 
ZL in the interval d.z~ from a population with number density nl is (TOG; Peebles 
1993) 

dr = dt dz 
-nrucdrr. L’ 

(8) 
where from (2) we have 

dt H-‘(z) -Jqn,,(1+%)3+n,,(l+%)m-RH)(l+%)2)-1’2. (9) 
dz=- 1+z = 1+r 

The cross section (0) in (8) is given by 

u = xa2,, (10) 

where a, is the effective radius of the lens, that is, a, is the maximum distance of 
the lens from the optical axes for which multiple image is possible. 

The total optical depth (7) is obtained by integrating dr along the line of sight 
from 0 to ZS, that is -. 

7 = I =’ dr = - 
0 I 0 

=’ npe$dzL. 
L 

(11) 
In the angular diameter distance definition it is assumed that the matter in the 

universe is homogeneously distributed. However the gravitational lens effect will not 
occur in a smooth universe. Only if matter is clumped, as in the real universe, can 
this effect take place. A distance formula that takes matter clumping into account 
was proposed by Dyer and Roeder (1972, 1973) and is known as the Dyer-Roeder 
(DR) distance. Here we will consider two extreme cases. We have already discussed 
the first one in which the smoothness parameter (a), where 0 5 5 5 1, is equal to 
one (filled beam DR distance or angular diameter distance). The other extreme case, 
& = 0, is called the DR empty beam distance (Schneider, Ehlers and Falco 1992). 

For the models under consideration, the empty beam DR distance is given by ( 
FFKT) 

dmzh a) = cH,-‘(1 + ZL.) x 

2.9 IJ (I+ $r2dy 
(12) 

IL a,,( 1 + ?.J)3 + (1 - RmO - fLO>(l + Y)2 + *A1 + y)m 

Notice that for the same Rme, flat models (ame + Rd = 1) with m = 2 and open 
models (a,.~ = 0) have the same empty beam distance. For the open ( just make m = 2 
in (13) ) and flat models, equation (12) can be expressed in terms of hypergeometric 
functions as 
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&dU, 3) = 
2cH,‘(l+ %L) x 

56 

((1 +%L)-sQ(;,6 52m; ‘8 -;z,-l;*m”(l +rL)“-s) - 
m0 

(1+ 4 -54+ 5 ll-2m l-R,, 
2’6-2m’ 6-2m’- Rm0 

(1 + %s)“-3)>. (13) 

Again, in the limit Rme + 1 the hypergeometric function goes to unity and (13) 
simplifies to 

h(% %s) = 
2cH,‘(l + %L) 

5& ((1 + %L)-5’2 - (1 + zs)-5’2). 04) 

In obtaining the probability of multiple images in (1 l), we considered a random 
line of sight to the source at %s, calculated the expected number of lenses (d7) in 
the redshift interval dzL around % L, and then integrated dr from 0 to %s. Ehlers 
and Schneider (1986) observed that in a self-consistent treatment of probabilities in a 
clumpy universe, the random variable should be the position of the source on a sphere 
at %S (and not the line of sight to the source). They then proposed a new derivation for 
the optical depth that is called the ES probability. The Ehlers-Schneider differential 
probability (dTES) can be expressed as (FFKT) 

where in dr (given by equation (8)), the empty beam distance should be used. By 
integrating (15) from 0 to %S we obtain the total ES optical depth. 

In Figures la and lb we present the quantity Dos/cH<’ for the filled and empty 
beam distances. We also show in Figures 2a and 2b , also for both distances, 
the combination DotD~s/(DoscH<l) that appears, through am, in the differential 
probability formulas. We are following the TOG and 
DLS = +L,Q), DOS = d(O,zs) and DOL = ~(OL.). 

FFKT notation, such that 

3 The isothermal sphere galaxy model 
Let us now consider the isothermal sphere model for galaxies. This model is 

characterized by two parameters, namely, the core radius (rC) and the one-component 
velocity dispersion (all). Following Hinshaw and Krauss (1987), we assume the lens 
galaxy to have the following density profile 

n 

P(r) =. 4 
2nG(r2 + rc2) ’ (16) 
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The surface mass density of the lens on the lens plane is given by (Bourassa & 
Kantowski 1975) 

and the projected mass interior to the impact parameter b is, 

M(b) = 2r 1” aC(a)da ,= 

The bending angle is 

(y= 4GM(b) =aod-?-t; 
c2b b 3 

(18) 

(19) 

where aa = 47r (T)’ fi: 1.8”(~11/250 kms -1)2 denotes the constant bending angle for 
the singular isothermal sphere case (SIS), obtained by taking the limit r, + 0. 

By using simple geometry it is easy to see from Figure 3 that 

l+b= DOLDLS~ 

DOS ' 

where I is the distance from the lensing galaxy to the unperturbed line of sight. It 
follows from (19) ‘and (20) that, if r, = 0 (SIS case), the maximum value of I for 
multiple images (am) is given by 

(21) 

If r, # 0 (NSIS), by substituting (19) in (20) we get the cubic equation, 

b3 + 2Zb2 + (Z2 + 2r,a,(O) - aL(O))b + 2Zr,a,(O) = 0. (22) 

The number of real and distinct solutions of (22) depends on the sign of its dis- 
criminant. Hinshaw and Krauss (1987) showed that in order to produce multiple 
images, the lens maximum distance from the unperturbed line of sight should have 
the following expression 

%!r = &r(O) (1+ 5p - +) - ;p1/2(~ + 4)3/2] ’ , (23) 

where ,0 = r,/a,(O). Further, from the multiple image diagram (Young et. al. 
1980, Blandford and Kochanek 1987), they also showed that multiple images are only 
possible if ,f3 < l/2. So, the cross section for NSIS is u = 0 for p > l/2 and Q = ?ruL 
(with a, given by equation (23)) if /3 < l/2. In fact, if /3 < l/2, instead of two 

7 



(as in SIS), three images are predicted, in agreement with the odd number of images 
theorem valid for symmetric (non-singular) lenses (Subramanian & Cowling 1986). 
It can also be shown (Hinshaw and Krauss; see also Hinshaw 1988 for more details) 
that the angular image separation between the two outer images is given by 

f) = ?tgJ [(l - p)2 - py2. (24) 

Notice that if p = 0 the usual result 8 = 87r& (T)2, valid for SIS lenses, is recov- 
ered. 

In the SIS case, by using equation (21) and assuming conserved comoving number 
density of lenses ( nl = ne( 1 + z)~ ), equation (1 l), can be analytically integrated. By 
using standard distance and statistics we obtain for flat models, 

$4 = $ (&OX .z.s>(l + %s)J3. (25) 

Here, 

f 
1671-s =- 
CHi 

< noun > (26) . . 

measures the effectiveness of the lens in producing multiple images (TOG). An ana- 
lytic expression for r in the case of filled beam distance and standard statistics can 
also be obtained for k # 0 (see Gott, Park and Lee 1989). 

Following FT, we consider the existence of 3 species of galaxies (E, SO and S) and 
assume a Schechter form for the luminosity function, 

@(L)dL = $*( k)a exp( -L/L*)%, (27) 
where @ = (1.56 f 0.4) x 10e2h3Mpce3 (Efstathiou, Ellis & Peterson, 1988) is a 
galaxy number density and (Y = -1.1 f 0.1 (see FT). The morphological composition 
is assumed to be E : SO : S = 12 : 19 : 69. We assume, in addition, the relationship, 
(*) = ($)7, between galaxy luminosity and velocity dispersion. Here the exponent 
r is, 7 = 4 for E/SO ( Faber and Jackson 1976) and 7 = 2.6 for S galaxies (Tully and 
Fisher 1977). Substitution of (27) in (26) leads to, 

f 
167r3 

= -qb*u~4r(a + ; + l), 
cH; 

where I’(z) is the Gamma function and ui is the velocity dispersion corresponding to 
the characteristic luminosity L*. 

Fukugita and Turner estimated ui to be: 

225+g for E, 
ui = 206+g for SO, 

144?& for s. 
(29) 
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To take into account dark massive halos, they follow TOG and also adopted a (3/2)‘/’ 
correction factor for the velocity dispersions for E/SO galaxies. With the above 
numbers we find f~ = 0.018 f 0.009, fso = 0.020 f 0.011, and fs = 0.007 f 0.003 
(total effectiveness parameter, f = 0.045 f 0.023). More recently Kochanek (1993) 
argued that the ratio of dark matter dispersion velocity to that of luminous matter 
should be in the range 0.9 - 1.05 and suggested that the (3/2)‘i2 correction factor 
should not be considered. Without this the factors fqso are 2.25 smaller, that is, 
fE = 0.008 f 0.004, fso = 0.009 f 0.005 and we get f = 0.024 f 0.012. We shall 
consider in the next section these two cases when comparing the predictions of the 
models with observations. 

In Figures 4a and 4b the normalized optical depth (~/f), for the four models in the 
SIS case, is displayed for filled beam distance and standard statistics (Figure 4a) and 
for empty beam distance and Ehlers-Schneider statistics (Figure 4b). We also obtained 
the optical depth for the NSIS case. As discussed before, in this case we should use 
the appropriate cross section with aer given by (23). For an analytic expression of 
the NSIS optical depth in the standard case see Krauss and White (1992). In Figure 
5a is displayed the NSIS normalized optical depth for filled beam distance (standard 
statistics). In Figure 5b the same quantity is displayed for the empty be-am distance 
(Ehlers-Schneider statistics). A constant value for the core radius, r, = 0.5h-‘kpc 
and a velocity dispersion ui = 144 km/s are assumed for all the models. 

The present available data do not allow very good estimates for the core radius of 
galaxies. In fact, r, seems to vary a lot even among galaxies with the same morphol- 
ogy. However there is some evidence that most spirals have large core radius (rc 2 0.5 
kpc), although there are also indications that N 10% of them have very small cores 
(FFKT and references therein). So, in view of the lack of more precise information 
we assume that 90% of spiral galaxies have a constant core r, = 0.5h”kpc and that 
the remaining 10% are well described by SIS. In fact these assumptions are enough to 
practically reduce the contribution of S galaxies to the optical depth to only 10% of its 
SIS value. Actually in case C (cosmological constant), remains another - 1% effect. 
We can understand this small difference by observing that the quantity Dol;DLs/Dos 
for fixed redshift is higher in case C (see Figure 2). This means that the parameter 
p tends to be smaller in case C and explains why the effect should be less important 
in this case. In any case, we confirm the conclusion obtained by Krauss and White, 
that spiral galaxies have a very small effect on lensing frequencies even if we do not 
include the @? f ac t or in the E/SO dispersion velocities. 

While spirals usually have large core radius, E and SO galaxies are believed to 
have smaller ones. Most of the analyses of elliptical galaxies are based on slightly 
different relations between core radius and velocity dispersion (luminosity) that are 
usually derived by using Lauer’s (1985) study of nearby elliptical galaxies. Lauer 
found that 14 galaxies (from a total number of 42) have resolved cores (80~~ 2 r, 5 
4OOpc), 23 were unresolved and 5 had marginally resolved cores. By fitting Lauer’s 
data for the resolved cores, Krauss and White obtained a relation between E core 
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radius and luminosity. By assuming that relation to be valid for all E galaxies they 
obtained a suppression factor N 0.4 for the Einstein-de Sitter model and N 0.63 for 
the cosmological constant dominated universe. Fukugita et al. (FFKT) assumed 
that l/3 of E galaxies are well described by the relation they obtained from Lauer’s 
study. They also assumed that another l/3 have core radius given by multiplying 
that relation by l/3 and that the remaining l/3 have r, N 10~~. With this model 
they obtained a suppression factor equal to 0.65. They also claim having changed 
their assumptions in a reasonable way and always getting numbers between 0.5 and 
0.7. We analysed this effect more quantitatively and reached similar results. 

We also analysed the core radius effect in the case of empty beam and ES-statistics. 
We found that the suppression is higher in this case. The reason is that am(O) for 
the empty beam case is smaller and this implies that p is higher, thus increasing 
the suppression effect. Actually, for spiral galaxies the effect can be very high. For 
instance, from Figures 4a and 4b it is clear that rs~s(z, filled beam)/rsls(z, empty 
beam) is less than one. This means that we should expect a higher frequency of 
lensed quasars in the open beam case. However by looking at Figures 5a and 5b 
we immediately realize that for the special choice of the parameters TN&Z, filled 
beam)/rN&z, empty beam) is higher than one and the opposite would be expected. 
In fact this occurred because we considered in our example a typical spiral galaxy 
with relatively. high core radius and small velocity dispersion. For E/SO galaxies 
we should expect this effect not to be so conspicuous and, in fact, under reasonable 
assumptions we obtained a suppression factor that is only 2 10% higher than that 
in the filled beam case. In the next section, when comparing model predictions to 
observations, we will take this small difference into consideration. In order to simplify 
calculations, we will follow FFKT and assume, for filled beam distance, a constant 
core effect suppression factor equal to 0.65 for E/SO galaxies. In the case of the 
empty beam we will consider a suppression factor equal to 0.60. 

By using the filled beam distance, standard statistics and the SIS profile it can be 
shown (see FT and FFKT) that the normalized image angular separation distribution 
for a source at zs is given by 

$&,e) = -L Jzs *dZL 
~(2s) o dzLd0 

In Figure 6a the predicted image separation distribution for a source at redshift 
%s = 2.2 (the quasar average redshift in the HST snapshot survey) is shown in two 
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cases for E/SO galaxies. We took Q = -1.1, and to simplify the computation we 
considered the same velocity for E and SO galaxies, that is.-.we chose an average 
velocity, all * = 213 x fi km/s in case (i) and ui = 213 km/s in case (ii). The same 
quantity for both cases is also displayed in Figure 6b for the empty beam distance 
and Ehlers-Schneider statistics. In this case we took into account equation (15) in the 
definition of the differential optical depth. Figure 6a shows that for flat models and 
filled beam distance the image separation distribution is independent of m and ame. 
In fact, as remarked by FFKT, it is also independent of ZS. For empty beam distance 
the degeneracy of flat models is broken and we can observe a shift of the distribution 
to smaller values of angular separation. It is also clear that in both cases increasing 
the velocity dispersion increases the probability of larger image separation. 

4 Comparison with observations 

In this section we shall compare the predicted number of multiple images (and their 
angular image separation) for the models presented in section 2 with the observational 
results of the Hubble Space Telescope Snapshot Survey (Maoz et al. 1993). In the last 
report of the survey,‘~I&oz et al. announced the existence of six lens candidates from 
a sample of 502 quasars. In fact, two of the lensed candidates have unexpectedly large 
image separation. There is evidence that one of them was produced not by a single 
galaxy but by a more complex system, and it is not clear that the other one is really a 
multiple image of one single object (Maoz and Rix and references therein) . Following 
the current interpretation, we shall not include these two cases in our analysis. The 
four remaining candidates have the following redshift and image separation (t&J): 
(3.8, 0.4T’), (2.55, 1.22”), (1.72, 2.0”) and (2.72, 2.2”). 

The expected number of lensed quasars in the survey (NE), for each model, is 
obtained by computing the quantity 

NE = 2 r(%i) (31) 
i=l 

where the sum is over the NQ quasars redshifts of the survey. In calculating the 
expected number of multiple images, besides the core radius effect that we discussed 
in the last section, we also took into account two other corrections to 7, namely, the 
angular selection effect ( x0.95 for E and SO) and magnification bias (x9.1) (see 
Fukugita and Peebles). 

In Table 1 we display, for each model, the predicted number of lensed quasars for 
the HST snapshot survey. The numbers were obtained for filled beam and standard 
statistics as well as for empty beam and Ehlers-Schneider statistics. We show results 
for the cases in which we have and have not included the (3/2)‘/’ factor in velocity 
dispersion. By assuming Poisson statistics we also display, for all cases. the probability 
of detecting the observed number (four) of lensed quasars. Notice that in case C the 
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final results depend considerably on the assumptions performed.. For instance, if we 
take into account the (3/2)‘i2 factor, the predicted number of lensed quasars is too 
high in model C. However if we do not consider the correction the model cannot be 
ruled out, at least based only on the total number of images. From Table 1 we also 
see that model D is the least sensitive to the assumptions and seems to be in good 
agreement with observations. It is also clear that the lensing rate is a factor N 2 
smaller in model B than in model C and this corroborates the idea that usually decay 
A models have a lower lensing rate than the constant A ones. We should remark that 
this is not always true and some decaying A models can, in fact, predict very large 
lensing rates. 

Recently Kochanek (1993) pointed out that analyses based only on Poisson statis- 
tics give no weight to the different ways that a fixed number of multiple images is 
produced. He then suggested a maximum likelihood method that takes this into 
account. His technique is based on the following likelihood function, 

L = fJ(l -Pi) 3Pj fli Pck- 
j=l h=l 

(32) 

Here Nu is the number,of unlensed quasars, NL is the number of lensed ones, pi < 1 
is the probability that quasar i is lensed and Poe is the configuration probability, that 
we shall consider as the probability that quasar k is lensed with the observed image 
separation. 

We applied Ko&anek technique to the flat models. By expressing L as a function 
of the parameters m and f2ma we obtained the maximum of the likelihood function 
( Lmot) and formed the ratio 1 = L/Lma+. It can be shown that with two parameters, 
the distribution of -2 1nZ tends to a x2 distribution with two degrees of freedom 
(Kendall & Stuart 1977, Eadie et al. 1971, Kochanek 1993). 

Contours of constant likelihood are plotted in Figure 7. Regions with larger like- 
lihood are represented by lighter shades. The maximum of the likelihood is indicated 
by a cross (+). We should remark that the figure is very broad and is displayed 
to give a.qualitative view of the likelihoods. For the figure we considered the value 
of the velocity dispersion equal to 213 km/s. We observed that the results did not 
change appreciably when we increased the velocity dispersion to a;i = 261 km/s. 
Some qualitative aspects can be inferred from the figure. For instance, if m is low 
(rnz 0.5) regions with a lower value of A, let say, those with n,,,o 2 0.4, have higher 
likelihood. However if m 2 2 that constraint does not exist and models with low 
Rma are in fact more likely. We observe that in the two-dimensional space of the 
parameters of Figure 7, the Einstein-de Sitter models is represented by two points. 
The first one is m = 0 and firno = 1, while the second one is obtained by taking the 
limit m + 3 and Rms + 0. Figure 8 gives more quantitative information. We plot in 
it the 50%, 68%(lu) and 95.4%(2u) confidence levels for the likelihood ratio for the 
two parameters. 
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It is important to emphasize that our main goal in this paper was not to obtain 
constraints on possible values of a constant A. Our target in this work was rather 
to show that if A is not constant, the lensing constraints on fly are much weaker. 
In fact we found that regions with higher values of m and lower Rme present larger 
likelihood. However, if,we want to make some comparison with previous results, as 
for instance those of Kochanek (1993), we should fix the parameter m to the value 
m = 0 (cosmological constant). In this case the likelihood peaks at Q,,e = 0.62 
but now we have that -2 In1 is distributed like a x2 distribution with one degree 
of freedom. In this case the constraints on A are stronger and, for instance, we get 
i-l* 2 0.8 at 90% confidence level. We remark that we have not obtained one of 
Kochanek’s constraints, 0~ 5 0.45, for the following reasons. First, as we discussed, 
we were only considering lensing by galaxies, so we have not included in our analysis 
the lens 0957+561. Second, we have used the SIS profile but we took into account 
a core radius suppression effect. Third, in our likelihood analysis we neglected the 
contribution of spiral galaxies. 

5 Discussion and conclusion 

As is well known, a sufficiently long period of inflation in the early universe gives a 
natural solution to the isotropy, flatness, and monopole problems. A nearly invariant 
primordial spectrum is also generated in most of the inflationary models of the uni- 
verse, a feature that seems to be in good agreement with observations. Inflationary 
models usually predict flfold = 1. Nevertheless, observations on the scales 10 - 30 
Mpc, based on dynamical methods, indicate Rma = 0.2 f 0.1. Further, in flat models 
with n,a = 1 only if h 5 0.59 is it possible to get theoretical ages in agreement 
with the lowest age estimates (to = 11Gyr) for globular clusters. However, most of 
the recent observations indicate higher values for the Hubble parameter. Besides, the 
standard CDM model (n,a = 1 and h = 0.5) when normalized to COBE predicts 
more power on small scales than is observed, and some of its variants such as HCDM 
seem to work well only if h N 0.5 (Primack 1995). By assuming a non-zero cosmologi- 
cal constant all these problems can be solved at once while keeping the attractiveness 
of inflation. 

Cosmologists in general show an enormous resistance in accepting the idea of 
a non-zero cosmological constant for several reasons. First, because it is another 
parameter in the theory and from an aesthetic point of view this makes A-models 
less compelling. The second reason is that in order to dominate the dynamics of the 
universe only recently, this parameter should have a very small value (A 2 10-56cm-2) 
that is in fact 50 to 120 orders of magnitude below the estimate given by quantum 
field theory. If we assume a decaying cosmological term, this second problem is 
alleviated but we have to pay the price of introducing another parameter. In this 
paper we have also discussed a weakness on the observational side of constant-A 
models. It is the prediction of too high frequency of lensed quasars by models with 
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a large cosmological constant. Ratra and Quillen showed that the predicted lensing 
rate is considerably reduced in certain models in which a scalar field plays the role 
of an effective decaying A-term. In this paper we reached the same conclusion for 
models in which the cosmological term decreases with time as A oc a-“. We went one 
step further and also showed that for these models, lower values of flrne and larger 
m have higher likelihood. Finally, we should mention that by increasing the value 
of the parameter m, and maintaining constant the value of ame, the theoretical age 
predicted by the models we have considered decreases. So, it would be interesting to 
extend the likelihood analysis by also taking into account the age constraints. Further 
investigation in this direction is being carried out. 
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Table 1: Predicted number of lensed quasars for the HSTSS and model 
probabilities 

model A model B model C model D 
k=O k=O,m=2 k=O,m=O k=-1 

$2 m0 = 1 f&& = 0.2 fI*o = 0.2 n,, = 0.2 

filled beam (with @) 
probability 

2.6 
18% 

4.7 
1% 

10.7 
0.3% 

4.1 
19% 

empty beam (with 43/2) 4.2 7.1 
probability 19% 6% 

14 4.6 
lo-*% 18% 

filled beam (without ,/3/2) 
probability 

empty beam (without @) 
probability 

1.2 2.2 
9% 16% 

1.9 
14% 

3.3 
20% 

5.0 1.9 
16% 14% 

6.8 
7% 

2.1 
15% 
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Figure Captions 

Figure 1: Dyer-Roeder distance as a function of the redshift; (a) filled beam and (b) 
empty beam. 

Figure 2: The combination D~LDL~/(D~scH~‘) as a function of ZL ; (a) filled beam 
distance and (b) empty beam distance. 

Figure 3: Lensing geometry. 

Figure 4: The normalized optical depth (T/f) as a function of the redshift for the 
SIS case; (a) is for filled beam distance and standard statistics and (b) for empty 
beam distance and Ehlers-Schneider statistics. 

Figure 5: The normalized optical depth (T/f) as a function of the redshift for 
the NSIS case; (a) is for filled beam distance and standard statistics and (b) for 
empty beam distance and Ehlers-Schneider statistics. For all the plots we assumed 
rc = 0.5h-‘kpc and ai .= 144 km/s. 

Figure 6: Distribution of the angular image separation for a source at zs = 2.2 in 
SIS case. We took cr = -1.1,~ = 4 and considered in case (i) ai = 261 km/s and in 
(ii) ai = 213 km/s ; (a) filled beam and standard statistics and (b) empty beam and 
Ehlers-Schneider statistics. 

Figure 7: Contours of constant likelihood for flat models are plotted in the 0,s and 
m parameter space. Regions with larger likelihood are represented by lighter shades. 
The peak of the likelihood is indicated by the cross. 

Figure 8: Likelihood contours at 50%, 68%(la) and 95.4%(2a) confidence levels for 
the two dimensional likelihood distribution 1. 
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